Вопрос:
Пример: ученик не понимает простые дроби (числитель-знаменатель). не может повторить правило относящееся к ним, путает сложение дробей с умножением, приводит к общему знаменателю для умножения и т.д опытный преподаватель советует давать дроби в любимом контексте ученика - делить на части бумагу для оригами, теннисный корт и т.п. а статья, наоборот, советует долбить его "в области, где в наибольшей степени проявляется этот синдром" в чем дело? возможно для понимания следует разделить контексты? в соответствии с "Психике доступно два качественно разных области контекстов. Эволюционно более ранний - условно-рефлекторный, где образы восприятия-действия группируются по сочетаниям признаков контекстов без какой-то адекватной реальности связи между собой. Поздний - контекст мыслительных моделей понимания - то, что формируется как отражение взаимосвязей причин и следствий реального мира. " т.е. использовать "любимый контекст" - оригами, теннис, как условно-рефлекторный, образно - ткани, а в нем давать задачи на дроби- контекст мыслительных моделей понимания. образно - изготовления из ткани одеждыОтвет:
Во-первых, любимых контекстов не бывает, это - нонсенс. Все контексты - возникают потому, что они были нужны. Оригами, теннисный корт - области наиболее востребованных контекстов - стилей поведения, только и всего. А контекста с навыками деления просто еще нет, его нужно создать, а для этого нужно обеспечить достаточную актуальность, т.е. новизну и значимость в условиях, когда оригами не окажется значимее и не будет мешать. Если начать формировать представления дробей в области оригами, то практически оно окажется там неуместными и неприменимым, его придется все равно как-то уже по аналогии переносить в контекст решения совершенно практических проблем, где нужно эти дроби. Зачем делать лишнее? Только потому, что нет навыка как увлечь именно в подходящем контексте?
Почему ученик может не понимать? Это первое, что должен определить учитель. То ли потому, что учитель говорит непонятно для данного ученика (тот совершенно не так интерпретирует сказанное, для него часто услышанное звучит абсурдно и он просто удивленно моргает на учителя, чего он говорит?!), то ли потому, что у него нет нужных промежуточных представлений для понимания.
Если есть таковые, то ученик схватывает на лету, быстро справляется с недопониманием сказанного. Если нет, никакое оригами не даст ему эти представления, нужно вычленить их и начать с более простых элементов, из которых возникают понятия дробей.
Слава аллаху в случае маленького ребенка это не так безнадежно, как бывает, когда уже взрослый учитель, обремененных множеством автоматизмов из попыток как-то учить, но не понимающий всей иерархии усложнения механизмов психики, сразу пытается понять, как применить самые сложные механизмы. Тут возникает бессилие потому как просто необходимо все промежуточные механизмы очень хорошо понять. Или же альтернатива - пользоваться уже готовыми методичками в каждых конкретных случаях, в том числе методичками: а как определить по какой именно причине не понимает ребенок перед тем, как пытаться что-то сделать с этим ребенком. Вот у Вересаева есть книга о том, как учились врачевать фельдшеры, это - ужас какой-то, сколько бед они совершали, пока осваивали, скажем интубацию при непроходимости дыхалки :)