Ознакомьтесь с Условиями пребывания на сайте Форнит Игнорирование означет безусловное согласие. СОГЛАСЕН
ВХОД
 
 

Новость сайта Fornit

Электронику учат размножаться

Возможности современной биологии и химии позволяют создавать принципиально новые полупроводниковые материалы и наноустройства принципиально новыми методами. Японским ученым удалось создать органический тиристор, а их американские коллеги научили наноустройства размножаться.
Японские ученые под руководством Ихиро Терасаки (Ihiro Terasaki) из университета Васеда разработали органический материал, способный преобразовывать постоянный ток в переменный. Материал представляет собой органическую электропроводящую соль с формулой Θ-(BEDT-TTF)2CsCo(SCN)4. Структурно она представляет собой чередующиеся слои BEDT-TTF, который является проводником, и CsCo(SCN)4 — изолятором.
Как сообщает PhysicsWeb, при низких температурах кристалл имеет большое электрическое сопротивление вследствие эффекта «упорядочивания заряда» (charge ordering).
Приложив к кристаллу разность потенциалов, можно мгновенно «разрушить» упорядоченное состояние заряда, вследствие чего сопротивление материала резко упадет. Фактически, вольт-амперная характеристика материала очень напоминает характерную для обычного полупроводникового тиристора — несмотря на принципиально отличный механизм. Изобретателям органического тиристора уже удалось продемонстрировать способность материала преобразовывать постоянный ток в переменный с частотой 40 Гц.
Как сообщает Eurekalert, массовое и дешевое производство структурированных наноустройств теперь стало возможным благодаря использованию биологических методов воспроизводства. Это открытие может привести к беспрецедентному прорыву в производстве генетически проектируемых микроустройств (GEMs) для биомедицины, компьютерной индустрии, охраны окружающей среды, оборонной промышленности и других отраслей.
Традиционные методы производства GEMs, подобные методам производства компьютерных чипов, во-первых, слишком дороги, а во-вторых, не подходят для массового производства сложных трехмерных наноструктурных устройств с широким набором химических компонентов и свойств. В природе существует множество микроорганизмов, которые сочетают в себе наноструктурную оболочку, хорошо управляемую и эффективно воспроизводимую форму и другие возможности, пока недостижимые для искусственных устройств. Но микроорганизмы не обладают такими важными в технике свойствами, как электрическая проводимость, биологическая и химическая совместимость и тепловая стабильность.
Согласно заявлению ведущего автора исследования, профессора технологического института штата Джорджия Кеннета Сандхаджа (Kenneth Sandhage), его команде удалось изменить химическую структуру наноустройств, полученных биологическими методами, без утраты их морфологии и других особенностей. Это должно дать импульс к созданию новых устройств, производство которых ранее было трудным или дорогостоящим.

04-10-2005г.