Обмен веществ и энергии — совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи, отличающих живое от неживого. В обмене веществ, или метаболизме, обеспеченном сложнейшей регуляцией на разных уровнях, участвует множество ферментных систем. В процессе обмена поступившие в организм вещества превращаются в собственные вещества тканей и в конечные продукты, выводящиеся из организма. При этих превращениях освобождается и поглощается энергия.
Клеточный метаболизм выполняет четыре основные
специфические функции: извлечение энергии из
окружающей среды и преобразование ее в энергию
макроэргических (высокоэргических) соединений в
количестве, достаточном для обеспечения всех
энергетических потребностей клетки; образование из
экзогенных веществ (или получение в готовом виде)
промежуточных соединений, являющихся
предшественниками высокомолекулярных компонентов
клетки; синтез
Для понимания сущности обмена веществ и энергии в живой клетке нужно учитывать ее энергетическое своеобразие. Все части клетки имеют примерно одинаковую температуру, т.е. клетка изотермична. Различные части клетки мало отличаются и по давлению. Это значит, что клетки не способны использовать в качестве источника энергии тепло, т.к. при постоянном давлении работа может совершаться лишь при переходе тепла от более нагретой зоны к менее нагретой. Т.о., живую клетку можно рассматривать как изотермическую химическую машину.
С точки зрения термодинамики живые организмы представляют собой открытые системы, поскольку они обмениваются с окружающей средой как энергией, так и веществом, и при этом преобразуют и то, и другое. Однако живые организмы не находятся в равновесии с окружающей средой и поэтому могут быть названы неравновесными открытыми системами. Тем не менее при наблюдении в течение определенного отрезка времени в химическом составе организма видимых изменений не происходит. Но это не значит, что химические вещества, составляющие организм, не подвергаются никаким превращениям. Напротив, они постоянно и достаточно интенсивно обновляются, о чем можно судить по скорости включения в сложные вещества организма стабильных изотопов и радионуклидов, вводимых в клетку в составе более простых веществ-предшественников. Кажущееся постоянство химического состава организмов объясняется так называемым стационарным состоянием, т.е. таким состоянием, при котором скорость переноса вещества и энергии из среды в систему точно уравновешивается скоростью их переноса из системы в среду. Т.о., живая клетка представляет собой неравновесную открытую стационарную систему.
В зависимости от того в какой форме клетки
получают из окружающей среды
Гетеротрофные клетки, в свою очередь, можно разделить на два больших класса: аэробы, которые в качестве конечного акцептора электронов в цепи переноса электронов используют кислород, и анаэробы, где такими акцепторами являются другие вещества. Многие клетки — факультативные анаэробы — могут существовать как в аэробных, так и в анаэробных условиях. Другие клетки — облигатные анаэробы — совершенно не могут использовать кислород и даже гибнут в его атмосфере.
Рассматривая взаимоотношения организмов в биосфере в целом, можно заметить, что в смысле питания все они так или иначе связаны друг с другом. Это явление носит название синтрофии (совместного питания). Фототрофы и гетеротрофы взаимно питают друг друга. Первые, являясь фотосинтезирующими организмами, образуют из содержащегося в атмосфере СО2 органические вещества (например, глюкозу) И выделяют в атмосферу кислород; вторые используют глюкозу и кислород в процессе свойственного им метаболизма и в качестве конечного продукта обмена веществ вновь возвращают в атмосферу СО2. Этот круговорот углерода в природе теснейшим образом связан с энергетическим циклом. Солнечная энергия преобразуется в ходе фотосинтеза в химическую энергию восстановленных органических молекул, которая используется гетеротрофами для покрытия своих энергетических потребностей. Химическая энергия, получаемая гетеротрофами, особенно высшими организмами, из окружающей среды, частично превращается непосредственно в тепло (поддержание постоянной температуры тела), а частично — в другие формы энергии, связанные с выполнением различного рода работы: механической (мышечное сокращение), электрической (проведение нервного импульса), химической (биосинтетические процессы, протекающие с поглощением энергии), работы, связанной с переносом веществ через биологические мембраны (железы, кишечник, почки и др.). Все эти виды работы суммарно могут быть учтены по теплопродукции.
Между обменом веществ и обменом энергии
существует одно принципиальное различие. Земля не
теряет и не получает сколько-нибудь заметного
количества вещества. Вещество в биосфере
обменивается по замкнутому циклу и т.о.
используется многократно. Обмен энергией
осуществляется иначе. Она не циркулирует по
замкнутому циклу, а частично рассеивается во
внешнее пространство. Поэтому для поддержания
Другим, не менее важным для живых организмов
элементом, чем углерод, является азот. Он
необходим для синтеза белков и нуклеиновых кислот.
Главным резервом азота на Земле служит атмосфера,
почти на 4/5 состоящая из
молекулярного азота. Однако вследствие химической
инертности атмосферного азота большинство живых
организмов его не усваивают. Лишь азотфиксирующие
бактерии обладают способностью восстанавливать
молекулярный азот и таким образом переводить его в
связанное состояние. Связанный азот совершает
беспрерывный круговорот в природе. Восстановленный
азот, попадающий в почву в виде
Валовый (суммарный) обмен вещества и энергии. Законы сохранения вещества и энергии послужили теоретической основой для разработки важнейшего метода исследования обмена веществ и энергии —установления балансов, т.е. определения количества энергии и веществ, поступающих в организм и покидающих его в форме тепла и конечных продуктов обмена. Для определения баланса веществ необходимы достаточно точные химические методы и знание путей, по которым различные вещества выделяются из организма. Известно, что главными пищевыми веществами являются белки, липиды и углеводы. Как правило, для оценки содержания белков в пище и в продуктах распада достаточно определить количество азота, т.к. практически весь азот пищи находится в белках, в т.ч. в нуклеопротеинах; незначительным количеством азота, входящим в состав некоторых липидов и углеводов, в опытах по определению азотистого баланса можно пренебречь. Определение липидов и углеводов в пищевых продуктах требует специфических методов, что же касается конечных продуктов обмена липидов и углеводов, то это почти исключительно СО2 и вода.
При анализе конечных продуктов обмена
необходимо принимать во внимание пути выделения их
из организма. Азот выделяется главным образом с
мочой, но также и с калом и в небольшом количестве
через кожу, волосы, ногти (см.
Баланс энергии определяют на основании калорийности вводимых пищевых веществ и количества выделенного тепла, которое может быть измерено или рассчитано. При этом надо учитывать, что величина калорийности, получаемая при сжигании веществ в калориметрической бомбе, может отличаться от величины физиологической калорической ценности, т.к. некоторые вещества в организме не сгорают полностью, а образуют конечные продукты обмена, способные к дальнейшему окислению. В первую очередь это относится к белкам, азот которых выделяется из организма главным образом в виде мочевины, сохраняющей некоторый потенциальный запас калорий. Важной величиной, характеризующей особенности обмена отдельных веществ, является дыхательный коэффициент (ДК), который численно равен отношению объема выдыхаемого СО2 к объему поглощенного О2. Калорическая ценность, ДК и величина теплообразования, рассчитанная на 1 л потребленного О2 для разных веществ различны. Физиологическая калорическая ценность (в ккал/г) составляет для углеводов — 4,1; липидов — 9,3; белков — 4,1; величина теплообразования (в ккал на 1 л потребленного О2) для углеводов — 5,05; липидов — 4,69; белков — 4,49.
Интенсивность обмена веществ и энергии может быть определена прямыми и непрямыми методами. В прямых методах с помощью большого калориметра путем тончайшего измерения температуры определяют отдачу тепла, одновременно производят полное определение баланса отдельных пищевых веществ. В непрямых методах, значительно более простых, измеряют лишь отдельные параметры обмена, чаще всего количество потребленного О2 и выделенного СО2 за определенное время и, кроме того, для оценки интенсивности белкового обмена определяют количество азота, выделенного за это время с мочой. Поскольку содержание азота в белках приблизительно постоянно и составляет в среднем 16 г на 100 г белка, 1 г выделенного азота соответствует 6,25 1 белка, вовлеченного в метаболизм. Зная количество белка, метаболизированного за время опыта, рассчитывают, сколько О2 пошло на окисление белка и сколько СО2 выделилось за счет белка. Эти количества вычитают из общего количества О2 и СО2, измеренного в ходе опыта. В результате получают так называемые небелковые О2 и СО2. Из их соотношения находят небелковый ДК. С помощью данных, помещенных в таблице 1, по величине небелкового ДК находят теплопродукцию за счет небелковых веществ и долю углеводов и липидов в этой теплопродукции. Т.о., на основании данных о количестве поглощенного О2, выдыхаемого СО2 и выделенного с мочой азота за определенный период времени может быть вычислена теплопродукция и установлены количества белка, углеводов и липидов, катаболизировавшихся за этот период.
Таблица 1
Величины дыхательного коэффициенте, теплопродукции и калорического эквивалента, кислорода при потреблении смесей липидов и углеводов различного состава
Величина дыхательного коэффициента (ДК) |
Доля теплопродукции (в процентах) |
Величина теплообразования, пересчитанная на 1 л потребленного О2, т.е. калорического эквивалента (ккал на 1 л О2) | |
за счет углеводов |
за счет липидов | ||
0,71 |
0 |
100 |
4,686 |
0,75 |
15,6 |
84,4 |
4,739 |
0,80 |
33,4 |
66,6 |
4,801 |
0,82 |
40,3 |
59,7 |
4,825 |
0,85 |
50,7 |
49,3 |
4,862 |
0,90 |
67,5 |
32,5 |
4,924 |
0,95 |
84,0 |
16,0 |
4,985 |
1,00 |
100 |
0 |
5,047 |
Влияние различных условий на обмен веществ и энергии. Интенсивность обмена, оцениваемая по общему расходу энергии, может меняться в зависимости от многих условий и в первую очередь от физической работы. Однако и в состоянии полного покоя обмен веществ и энергии не прекращается, и для обеспечения непрерывного функционирования внутренних органов, поддержания тонуса мышц и др. расходуется некоторое количество энергии.
Для оценки индивидуальных особенностей обмена определение интенсивности обмена проводят в стандартных условиях: при полном физическом и психическом покое, в положении лежа, не менее чем через 14 ч после последнего приема пищи, при окружающей температуре, обеспечивающей ощущение комфорта. Полученную величину называют основным обменом. У молодых мужчин основной обмен составляет 1300—1600 ккал/сут. (1 ккал на 1 кг массы тела в час). У женщин величина основного обмена на 6—10% ниже, чем у мужчин. С возрастом (начиная с 5 лет) величина основного обмена неуклонно снижается (с 52,7 ккал/м2/ч у шестилетних мальчиков до 34,2 ккал/м2/ч у мужчин 75—79 лет). С повышением температуры тела на 1° интенсивность основного обмена у человека возрастает приблизительно на 13%. Повышение интенсивности основного обмена наблюдают также при снижении температуры окружающей среды ниже комфортной. Этот адаптационный процесс (химическая терморегуляция) связан с необходимостью поддерживать постоянную температуру тела.
При сравнении основного обмена у людей с разной массой тела было установлено, что основной обмен интенсифицируется с увеличением размеров тела (но не прямо пропорционально его массе). Большее соответствие наблюдается между основным обменом и величиной поверхности тела, т.к. поверхность тела в значительной мере определяет потерю организмом тепла путем проведения и излучения.
Определяющее влияние на величину обмена веществ и энергии оказывает физическая нагрузка. Основной обмен при интенсивной физической нагрузке по расходу энергии может в 10 раз превышать исходный основной обмен, а в очень короткие периоды (например, при плавании на короткие дистанции) даже в 100 раз. Общая суточная потребность организма в калориях определяется, в первую очередь, характером выполняемой работы (табл. 2).
Таблица 2
Нормальные величины суточной потребности в энергии для городского населения в зависимости от рода деятельности (данные Института питания АМН СССР)
Пол |
Группы интенсивности труда и суточная потребность в энергии | |||
1 |
2 |
3 |
4 | |
Мужчины |
2600—2800 ккал |
2800—3000 ккал |
2900—3200 ккал |
3400—3700 ккал |
Женщины |
2200—2400 ккал |
2350—2550 ккал |
2500—2700 ккал |
2900—3150 ккал |
Примечание: 1-я группа: работники умственного труда; операторы, обслуживающие современную технику; служащие, работа которых не связана с затратой физического труда. 2-я группа: работники связи, продавцы, медсестры, санитарки, проводники, швейники и др. 3-я группа: станочники, текстильщики, обувщики, водители транспорта, работники прачечных, почтальоны и др. 4-я группа: работники немеханизированного труда, а также горнорабочие, шахтеры, строительные рабочие, металлурги и др.
На обмен веществ и энергии существенно влияет особое свойство пищевых веществ, называемое их специфически-динамическим действием (СДД). Было замечено, что после принятия пищи теплоотдача организма возрастает на величину, превышающую количество калорий, содержащихся в принятой пище. Это свойство, различное для разных пищевых веществ, и назвали их специфически-динамическим действием. Наиболее высоким СДД отличаются белки. Принято считать, что прием белка с потенциальной калорической ценностью 100 ккал увеличивает основной обмен до 130 ккал, то есть СДД белка составляет 30%. СДД углеводов и жиров находится в пределах 4—6%. Механизм СДД заключается не только в том, что прием пищи стимулирует активность пищеварительного аппарата, так как СДД, например аминокислот, — проявляется и при их внутривенном введении. Главным в механизме СДД следует считать влияние пищевых продуктов на промежуточный обмен. Так, расчеты показали, что количество калорий, затрачиваемое на образование 1 моля АТФ при метаболизме белков, примерно на 30% выше, чем при обмене жиров и углеводов.
Промежуточный обмен веществ. Совокупность химических превращений веществ, которые происходят в организме, начиная с момента их поступления в кровь и до момента выделения конечных продуктов обмена из организма, называют промежуточным, или межуточным обменом (промежуточным метаболизмом). Промежуточный обмен может быть разделен на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизмом называют ферментативное расщепление сравнительно крупных органических молекул, осуществляемое у высших организмов, как правило, окислительным путем. Катаболизм сопровождается освобождением энергии, заключенной в сложных структурах органических молекул, и запасанием ее в форме энергии фосфатных связей АТФ. Анаболизм представляет собой ферментативный синтез крупномолекулярных клеточных компонентов, таких, как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их биосинтетических предшественников из более простых соединений. Анаболические процессы происходят с потреблением энергии. Катаболизм и анаболизм происходят в клетках одновременно и неразрывно связаны друг с другом. По существу, их следует рассматривать не как два отдельных процесса, а как две стороны одного общего процесса — метаболизма, в котором превращения веществ теснейшим образом переплетены с превращениями энергии.
Подробный анализ метаболических путей
показывает, что расщепление основных пищевых
веществ в клетке представляет собой ряд
последовательных ферментативных реакций,
составляющих три главные стадии катаболизма. На
первой стадии крупные органические молекулы
распадаются на составляющие их специфические
структурные блоки. Так, полисахариды расщепляются
до гексоз или пентоз, белки — до аминокислот,
нуклеиновые кислоты — до нуклеотидов и
нуклеозидов, липиды — до жирных кислот,
глицерина и других веществ. Все эти реакции
протекают в основном гидролитическим путем (см.
Процесс анаболизма тоже проходит три стадии. Исходными веществами для него служат те продукты, которые подвергаются превращениям на третьей стадии катаболизма. Т.о., третья стадия катаболизма является в то же время первой, исходной стадией анаболизма. Реакции, протекающие на этой стадии, выполняют как бы двойную функцию. С одной стороны, они участвуют в завершающих этапах катаболизма, а с другой — служат и для анаболических процессов, поставляя вещества-предшественники для последующих стадий анаболизма. Нередко такие реакции называют амфиболическими. На этой стадии, например, начинается синтез белка. Исходными реакциями этого процесса можно считать образование некоторых a-кетокислот. На следующей, второй стадии в ходе реакций аминирования или трансаминирования эти кетокислоты превращаются в аминокислоты, которые на третьей стадии анаболизма объединяются в полипептидные цепи. В результате ряда последовательных реакций происходит также синтез нуклеиновых кислот, липидов и полисахаридов. Лишь в 60—70 гг. 20 в. выяснилось, что пути анаболизма не являются простым обращением процессов катаболизма. Это связано с энергетическими особенностями химических реакций. Некоторые реакции катаболизма практически необратимы, т.к. их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. В ходе эволюции были выработаны другие, обходные реакции, сопряженные с затратой энергии макроэргических соединений.
Катаболический и анаболический пути отличаются,
как правило, и локализацией в
Т.о., пути метаболизма чрезвычайно многообразны. Однако в этом многообразии можно усмотреть проявление удивительного единства, которое является наиболее типичной и специфической чертой обмена веществ. Это единство состоит в том, что от бактерий до самой высокодифференцированной ткани высшего организма биохимической реакции не только внешне сходны, например по балансовым уравнениям и внешним эффектам, но и абсолютно тождественны во всех деталях. Другим проявлением такого единства следует считать наблюдаемое также на всем пути эволюции циклическое протекание важнейших метаболических процессов, например цикл трикарбоновых кислот, цикл мочевины, пентозный путь и др. Видимо, и сами биохимические реакции, отобранные и закрепленные в ходе эволюции, и цикличность их протекания оказались оптимальными для обеспечения физиологических функций организма.
Регуляция обмена веществ и энергии.
Клеточный метаболизм характеризуется высокой
устойчивостью и в то же время значительной
изменчивостью. Оба эти свойства, составляющие
диалектическое единство, обеспечивают постоянное
приспособление клеток и организмов к меняющимся
условиям окружающей и внутренней среды. Так,
скорость катаболизма определяется потребностью в
энергии в каждый данный момент. Точно так же
скорость биосинтеза клеточных компонентов
определяется нуждами данного момента. Клетка,
например, синтезирует аминокислоты именно с такой
скоростью, которая достаточна для того, чтобы
обеспечить возможность образования минимального
количества необходимого ей белка. Подобная
экономичность и гибкость метаболизма возможна лишь
при наличии достаточно тонких и чутких механизмов
его регуляции. Регуляция метаболических процессов
осуществляется на разных уровнях возрастающей
сложности. Простейший тип регуляции затрагивает
все основные параметры, влияющие на скорость
ферментативных реакций (см.
Следующий уровень регуляции сложных метаболических процессов касается мультиферментных реакций, которые представляют собой строгую последовательность превращений и катализируются целой системой ферментов. В такой системе существуют регуляторные ферменты, находящиеся обычно в начальных звеньях цепи реакций. Регуляторные ферменты, как правило, ингибируются конечным продуктом данной метаболической последовательности. Т.о. как только количество продукта реакции достигает определенной концентрации, дальнейшее его образование прекращается.
Третий уровень регуляции метаболических
процессов представляет собой генетический
контроль, определяющий скорость синтеза ферментов,
которая может значительно варьировать. Регуляция
на уровне
У человека и высших животных существуют еще два
уровня, два механизма регуляции обмена веществ и
энергии, которые отличаются тем, что связывают
между собой метаболизм, совершающийся в разных
тканях и органах, и таким образом направляют и
приспосабливают его для выполнения функций,
присущих не отдельным клеткам, а всему организму в
целом. Одним из таких механизмов управляет
Вторым уровнем регуляции, характерным для человека и высших животных, является нервная регуляция, представляющая собой самый высший уровень регуляции, наиболее совершенную ее форму. Нервная система, в частности ее центральные отделы, выполняет в организме высшие интегративные функции. Получая сигналы из окружающей среды и от внутренних органов, ц.н.с. преобразует их в нервные импульсы и направляет их к тем органам, изменение скорости метаболизма в которых необходимо в данный момент для выполнения определенной функции. Чаще всего свою регулирующую роль нервная система осуществляет через железы внутренней секреции, усиливая или подавляя поступление гормонов в кровь. Хорошо известно влияние эмоций на метаболизм, например предстартовое повышение показателей обмена веществ и энергии у спортсменов, усиленная продукция адреналина и связанное с этим повышение концентрации глюкозы в крови у студентов во время экзаменов и др. Во всех случаях регулирующее действие нервной системы на обмен веществ и энергии весьма целесообразно и всегда направлено на наиболее эффективное приспособление организма к изменившимся условиям.
Нарушение обмена веществ и энергии лежат
в основе повреждений органов и тканей, ведущих к
возникновению
Нормальное протекание метаболических реакций на
молекулярном уровне обусловлено гармоничным
сочетанием процессов катаболизма и анаболизма. При
нарушении катаболических процессов прежде всего
возникают энергетические трудности, нарушаются
регенерация АТФ, а также поступление необходимых
для биосинтетических процессов исходных субстратов
анаболизма. В свою очередь, первичное или
связанное с изменениями процессов катаболизма
повреждение анаболических процессов ведет к
нарушению воспроизведения функционально важных
соединений — ферментов, гормонов и др.
Нарушение различных звеньев метаболических цепей
неравнозначно по своим последствиям. Наиболее
существенные, глубокие патологические изменения
катаболизма происходят при повреждении системы
биологического окисления при блокаде ферментов
тканевого дыхания, гипоксии и др. или повреждении
механизмов сопряжения тканевого дыхания и
окислительного фосфорилирования (например,
разобщение тканевого дыхания и окислительного
фосфорилирования при тиреотоксикозе). В этих
случаях клетки лишаются основного источника
энергии, почти все окислительные реакции
катаболизма блокируются или теряют способность
аккумулировать освобождающуюся энергию в молекулах
АТФ. При ингибировании реакций цикла трикарбоновых
кислот выработка энергии в процессе катаболизма
сокращается примерно на две трети. При нарушении
нормального течения гликолитических процессов
(гликолиза, гликогенолиза) организм лишается
способности адаптироваться к гипоксии, что
особенно отражается на функционировании мышечной
ткани. Нарушение использования углеводов,
уникальных метаболических источников энергии в
условиях недостатка кислорода, является одной из
причин существенного снижения мышечной силы у
больных сахарным диабетом. Ослабление
гликолитических процессов затрудняет
метаболическое использование углеводов (см.
Утилизация липидов (см.
Катаболизм белков и аминокислот может нарушаться при отклонениях в процессах протеолиза, трансаминирования, дезаминирования, расщепления углеродных скелетов аминокислот и при несостоятельности систем обезвреживания азотистых шлаков.
Ведущее значение при нарушении анаболизма имеют дефекты в системе биосинтеза белков и нуклеиновых кислот. Причиной нарушения синтеза нуклеиновых кислот и белков может быть блокирование отдельных стадий синтеза нуклеотидов и заменимых аминокислот. Нарушение глюконеогенеза — процесса анаболизма углеводов — существенно сказывается на поддержании энергетического гомеостаза организма. Особое значение имеет ингибирование ферментов, катализирующих ряд ключевых реакций гликолиза и глюконеогенеза. Недостаток этих ферментов в результате ослабления их синтеза возможен при низком уровне секреции АКТГ и кортикостероидов.
Биосинтез липидов может нарушаться при
недостаточности биотина (см.
Существенные нарушения обмена веществ и энергии, связанные с разбалансированностью метаболизма, возникают при расстройстве процессов синтеза биологически активных веществ, особенно производных аминокислот (медиаторов, гормонов и др.).
При нарушении обмена веществ и энергии на
клеточном уровне прежде всего повреждаются
биологические мембраны (см.
В зависимости от специфической роли тех или иных органов и систем при нарушении их функции страдают взаимоотношения внутриклеточного метаболизма с окружающей средой, ухудшается адаптация клеток к изменению условий окружающей среды или нарушаются метаболическое постоянство внутренней среды организма и регуляторные процессы. Особенно опасно нарушение биоэнергетики головного мозга. Резервные энергетические возможности позволяют головному мозгу переносить прекращение доставки энергетических субстратов (прежде всего глюкозы) и кислорода не более чем на 3—5 мин, что и определяет кратковременную обратимость так называемой клинической смерти.
На уровне целостного организма при нарушении
обмена веществ и энергии ведущее значение имеет
расстройство процессов регуляции (выпадение
регуляторных сигналов, их усиление или
дискоординация, вследствие гипо-, гипер- и
дисфункции ц.н.с. и желез внутренней секреции).
Как потеря иннервации органов и тканей, так и
избыточная или извращенная импульсация ведут к
расстройствам
Нарушения обмена веществ и энергии могут быть
обусловлены действием как внешних, так и
внутренних факторов. К внешним факторам следует
отнести качественные и количественные изменения
состава пищи, экзогенные токсические вещества (в
т.ч. бактериальные токсины), проникновение в
организм патогенных микроорганизмов и вирусов.
Недостаток незаменимых
К внутренним факторам, вызывающим нарушения
обмена веществ и энергии, относят генетически
обусловленные нарушения синтеза ферментов (см.
Особое место занимают расстройства обмена веществ и энергии при малигнизации тканей. В основе злокачественного роста, по-видимому, лежат нарушения регуляции процессов синтеза белков. Все дальнейшие расстройства обмена веществ и энергии имеют вторичное происхождение.
Неравномерными, разнонаправленными изменениями
обмена веществ и энергии, ведущими к снижению
адаптационных возможностей организма и
способствующими возникновению болезней,
характеризуется старение. Первичные механизмы
старения связаны с изменениями в процессе синтеза
белка. При старении количество метаболически
активных белков уменьшается, а масса метаболически
инертных белков, наоборот, увеличивается. У лиц
пожилого возраста снижается интенсивность
обновления белков, изменяются соотношения
различных белковых фракций. Так, в старости в
крови увеличивается содержание глобулинов,
уменьшается концентрация альбуминов и
соответственно уменьшается величина
При старении происходят также специфические нарушения в обмене углеводов, которые связаны с изменением активности гликолитических ферментов. Уменьшение толерантности к углеводам во многом зависит от снижения инсулина в крови, изменения изоферментного спектра гексокиназы, уменьшения способности тканей реагировать на действие гормонов. Важное значение имеет снижение в старости гликогендепонирующей функции печени.
Нарушения в обмене липидов, возникающие в
процессе старения, способствуют развитию
атеросклероза. С возрастом увеличивается общее
содержание липидов в крови и тканях, нарастает
количество
Величина основного обмена у пожилых и старых
людей неуклонно снижается. Старческий организм
становится более чувствительным к недостатку
кислорода. При старении уменьшается интенсивность
дыхания многих тканей (миокарда, головного мозга,
почек и др.), снижается интенсивность не только
окисления, но и фосфорилирования, в клетках
уменьшается число митохондрий и это ограничивает
возможность клетки образовывать макроэргические
соединения. Наряду с угнетением тканевого дыхания
в ряде тканей нарастает интенсивность
Нарушения обмена веществ и энергии
устанавливаются на основании результатов
исследований компонентов крови, мочи, других
биологических жидкостей, материала, полученного
при биопсии и др. Суммарную оценку нарушений
обмена веществ и энергии можно произвести путем
определения основного обмена, азотистого баланса
(см.
Нарушения метаболического постоянства, свидетельствующие о сдвигах в его нейроэндокринной регуляции, установленные с помощью биохимического анализа крови, обнаруживают, т.о., прямым путем. Однако сведения о внутриклеточных обменных процессах, основанные на данных биохимического анализа крови, могут носить только косвенный характер. В некоторых случаях уточнение возможно при исследовании материала, полученного при биопсии органа или ткани. Исследование клеток крови (лейкоцитов, эритроцитов) как модельных клеточных систем может стать источником дополнительных косвенных данных. При оценке метаболических сдвигов в ц.н.с. особое значение приобретает биохимический и цитологический анализ цереброспинальной жидкости.
Лечение болезней обмена веществ и энергии
основывается на подборе соответствующей диеты,
гормонотерапии, использовании веществ, имеющих
выраженное сродство к отдельным железам внутренней
секреции, парентерального питания, специфической
терапии заболевания, являющегося первопричиной
нарушения обмена веществ. Лечение нарушений обмена
веществ и энергии при молекулярных болезнях,
помимо диетотерапии, симптоматическое.
Кардинальное решение задачи лечения этих болезней
связано прежде всего с успехами
Общие принципы коррекции нарушенного обмена веществ и энергии у детей состоят в следующем: наиболее эффективным методом восстановления нарушенного обмена веществ и энергии у детей является диетотерапия; энзимотерапия и индуцирование ряда ферментов с помощью введения гормонов коры надпочечников, щитовидной железы, а также некоторых лекарственных средств и витаминов; любое вмешательство в обменные процессы больного ребенка должно контролироваться с помощью соответствующих биохимических тестов.
Основным путем профилактики нарушений обмена
веществ и энергии является научно обоснованное по
качественному и количественному составу,
витаминизированное, содержащее все микроэлементы,
так называемое сбалансированное
Обмен веществ и энергии у детей. Анаболические процессы резко активизируются у плода в последние недели беременности. Сразу после рождения происходит активная адаптация метаболизма к переходу на дыхание атмосферным кислородом. У грудного ребенка и в первые годы жизни наблюдается максимальная интенсивность обмена веществ и энергии, а затем отмечается некоторое снижение показателей основного обмена.
В раннем детском возрасте при различных
инфекциях и расстройствах питания особенно часто
развиваются нарушения гомеостаза, токсический
синдром, дегидратация (см.
В пубертатном периоде (периоде полового
созревания) наступает новая перестройка
метаболизма, происходящая под влиянием
Отмечается так называемый пубертатный скачок
роста, обусловленный действием половых гормонов.
Гормон роста не играет существенной роли в
процессе пубертатного ускорения роста, во всяком
случае его концентрация в крови в этот период не
повышается. Несомненное стимулирующее влияние на
метаболизм в пубертатном периоде оказывает
активация функций щитовидной железы. Допускают
также, что в период
Регуляция гомеостаза становится наиболее устойчивой в подростковом возрасте, поэтому тяжелых клинических синдромов, связанных с нарушением регуляции обмена, ионного состава жидкостей тела, кислотно-щелочного равновесия, в этом возрасте почти не встречается.
Библиогр.: Беркович Е.М. Энергетический обмен в норме и патологии, М., 1964; Бузник И.М. Энергетический обмен и питание, М., 1978, библиогр.; Ванюшин Б.Ф. и Бердышев Г.Д. Молекулярно-генетические механизмы старения, М., 1977; Вельтищев Ю.Е., Ермолаев М.В., Ананенко А.А. и Князев Ю.А. Обмен веществ у детей, М., 1983; Давыдовский И.М. Общая патология человека. М., 1969; Лабори А. Регуляция обменных процессов, пер. с франц., М., 1970; Мак-Мюррей У. Обмен веществ у человека, пер. с англ., М., 1980; Мецлер Д.Е. Биохимия, пер. с англ., т. 1—3, М., 1980; Ныосхолм Э. и Старт К. Регуляция метаболизма, пер. с англ., М., 1977.
Обнаружен организм с крупнейшим геномом Новокаледонский вид вилочного папоротника Tmesipteris oblanceolata, произрастающий в Новой Каледонии, имеет геном размером 160,45 гигапары, что более чем в 50 раз превышает размер генома человека. | Тематическая статья: Тема осмысления |
Рецензия: Рецензия на статью | Топик ТК: Главное преимущество модели Beast |
| ||||||||||||