Ознакомьтесь с Условиями пребывания на сайте Форнит Игнорирование означет безусловное согласие. СОГЛАСЕН
 
 
Если в статье оказались ошибки...
 

К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть II.

Относится к   «Список теоретических статей»

В серии статей предполагается обсудить проблему самосовершенствующегося ИИ и связанного с этим будущего человечества

Относится к разделу искусственный интеллект

Эта статья опубликована автором самостоятельно с помощью автопубликатора, отражает личное мнение автора и может не соответствовать мировоззренческой направленности сайта Fornit. Оценка публикации может даваться в виде голосования (значок качества) или обосновано в обсуждении. Ссылки на обе эти возможности есть внизу статьи.

Около трёх лет назад мой давнишний знакомый (и крутой программист) Сергей Тарасов попросил меня прокомментировать свою заметку о последних новостях с фронтов развития "искусственного интеллекта". Я тогда согласился, но всё как-то никак руки не доходили. Так что, сейчас, пусть и с опозданием на три года, хочу посвятить здесь сколько-то места её разбору, так как мысли, высказанные в ней, на мой взгляд, достаточно широко распространены.

Итак, комментируя начавшийся в конце прошлого десятилетия спад числа стартапов, специализирующихся на ИИ тематике, автор заметки констатирует - "Сливки сняты, инвестиционное корыто пустеет, а (искусственного) интеллекта как не было, так и нет." Достаточно категорично. Давайте разбираться, пытаясь отделять мух от котлет. Итак, в данной фразе, по сути, есть два утверждения. Первое заключается в том, что "инвестиционное корыто пустеет". Не могу с этим согласиться. Хотя число новых стартапов в области ИИ действительно уменьшается, их финансирование продолжает стремительно расти. Свежие данные можно посмотреть, например, вот здесь. Как видно из приведённого в статье графика, финансирование стартапов в области ИИ с 2017-го по 2021-й годы выросло более, чем в 10 раз! Причины этого кажущегося противоречия объяснены в той же статье, на которую ссылается Сергей: "...Каждый следующий стартап всё сложнее и сложнее. Он требует уже не двух парней которые обучают нейронку на открытых данных. Он требует программистов, сервера, команду разметчиков, сложную поддержку, и.т.д. Как результат — стартапов становится меньше. А вот продакшена больше. Нужно приделать распознавание автомобильных номеров? На рынке сотни специалистов с релевантным опытом. Можно нанять и за пару месяцев ваш сотрудник сделает систему. Или купить готовую. Но делать новый стартап?.. Безумие! Нужно сделать систему трекинга посетителей — зачем платить за кучу лицензий, когда можно за 3-4 месяца сделать свою, заточить её для своего бизнеса. Сейчас нейронные сети проходят тот же путь, который прошли десятки других технологий."

Итак, с финансированием, вроде, пока всё ОК. Перейдём ко второму утверждению - "(искусственного) интеллекта как не было, так и нет". Тут надо сразу уточнить, что ИИ принято делить на так называемый "сильный ИИ", и "слабый ИИ". Под первым обычно понимают что-то вроде репликантов из "Бегущих по лезвию" (хотя по сюжету фильма, и их можно "подловить" на том, что у них, например, не была предусмотрена имитация эмпатии ), легендарного HAL 9000 из "Космической одиссеи", или, наконец андроидов из фильма "Искусственный разум" Кубрика-Спилберга. Таких систем сейчас действительно нет, и в ближайшие, как минимум, лет пять, они вряд ли появятся. "Слабый ИИ", это ИИ, способный решать на уровне человека, или даже лучше, какие-то отдельные задачи. В этом направлении есть определённые успехи (те же "экспертные системы", умеющие ставить больному диагноз, исходя из его истории болезни, не хуже врачей, появились ещё в 80-х годах прошлого века), но они пока не покрывают всех областей человеческой деятельности (хотя, прогресс в этом направлении весьма заметен). Но даже когда они будут покрывать всё, то, проинтегрировав их вместе, сильный ИИ всё же не получится, для этого нужно будет, как минимум, добавить в систему так называемый блок "здравого смысла" (что это такое, и как может быть реализовано - тема для отдельной статьи). Итак, что же сам Сергей понимает под ИИ?

Его ответ на этот вопрос таков: "Интеллект - это способность к абстрактному мышлению". Опять же, абстрактное мышление можно определять по разному, но суть его в том, что это способность условного "решателя" (в данном случае, не важно, живой он, или не живой) работать с различными моделями, оперирующими формальными объектами в рамках заданных априори законов и ограничений. Обладающий абстрактным мышлением решатель может в ответ на поставленные в рамках языка формальной системы вопросы давать на них формальные ответы. Откуда же берутся формальные объекты, которыми решатель оперирует в пределах логики их взаимоотношений внутри вышеописанных формальных систем? По существу, в основе их аксиоматики на самом нижнем уровне лежат объекты реального мира, из всех, фактически безграничных, свойств которых оставлены лишь те, что важны для решения некоторых конкретных задач (хотя это, конечно, не исключает в дальнейшем исследований свойств этих абстрактных систем безотносительно к их практической значимости).

В качестве классического примера можно назвать, например, Евклидову геометрию. Она появилась в античности как закономерное следствие необходимости практических расчётов, в частности, в области вычисления площадей земельных участков сложной формы, топографических изысканий, строительства больших сооружений и т.д. Все накопившиеся за несколько веков практические знания были затем обобщены Евклидом и выстроены в единую абстрактную систему, которую, именно благодаря её абстрактности, можно было легко использовать во множестве практических приложений. По сути, идеализировав такие общеизвестные ранее практические понятия как «место» (понятие точки), кратчайший путь между «местом» A и «местом» B, продолженный до бесконечности (понятие прямой) и т.д., ему удалось создать универсальный инструмент, с помощью которого можно было получать ответы на задаваемые в пределах этой же формальной системы вопросы. При этом, что бы получить ответ на новый вопрос, который ещё никогда до этого не был никем задан, нужно было пройти по графу цепочки формальных выводов, которая вела от вопроса к ответу. Далеко не всегда это было тривиальной задачей, по сути, в сложных случаях путь мог быть долгим, и его было невозможно пройти за разумное время методом перебора. И здесь на помощь приходят наработанные многими поколениями учёных правила, рекомендации, и ИНТУИЦИЯ. Именно интуиция, которая приходит с опытом, позволяет при движении по графу умозаключений постепенно приближаться к ответу, а не ходить кругами вокруг него. Представьте, например, что вам, оказавшись в незнакомом месте средневекового города с узкими кривыми улочками, нужно добраться до его центральной площади с городским собором. Кроме того, известно, что сам собор стоит на берегу реки. Прохожих, у которых можно было бы спросить дорогу, на улицах нет. Каковы могут быть ваши действия? Для начала, хорошо бы было дойти до ближайшего перекрёстка. Достигнув его, мы можем на глаз оценить, какая из отходящих от него улиц имеет наибольший уклон вниз. Выбрав движение по ней, мы, пожалуй, с наибольшей априори вероятностью будем двигаться в сторону реки (в теории поиска возможных экстремумов целевой функции подобный метод поиска глобального минимума называют методом наискорейшего  спуска). Но прежде, чем им воспользоваться, полезно всё же попытаться осмотреться вокруг – не видно ли где-то нечто похожее на шпиль упомянутого собора? Если вы увидите нечно подобное, и, в то же время, твёрдо знаете, что собор в городе только один, то, очевидно, наилучшей тактикой будет двигаться именно в этом направлении. Если нет, двигаемся по направлению наиболее крутого спуска. Это, конечно, не гарантирует нам стопроцентный успех (в городе могут быть и локальные низменности), но, во всяком случае, даёт нам неплохие шансы выйти к реке, после чего выбор дальнейших действий сузится до двух – пойти вдоль набережной по течению реки, или против него. Если же случится так, что дойдя до очередной развилки, мы  увидим, что все улицы ведут вверх, по-видимому, мы попали в ловушку локального минимума, и из неё нужно как-то выбираться. В этом случае возможной подсказкой может служить, например, направление на звук колоколов собора (если наши часы показывают, что скоро они должны зазвонить), мощение улиц (если какая-то улица замощена булыжником, это косвенно указывает на её древность, и, следовательно, возможность того, что она может привести в исторический центр города), или другие варианты, подсказываемые нашими знаниями и предыдущим опытом. В конце-концов, если никаких «подсказок» мы не найдём, видимо, придётся пойти просто наугад (это то, что называют «метод Монте-Карло»). Учёный, работающий над решением какой-то абстрактной научной задачи, в сущности, подобен заблужившемуся путнику из приведённого выше примера. Он знает, к чему должен стремиться, у него есть набор возможных путей решения поставленной задачи, есть опыт его предыдущей работы над подобными задачами, и есть интуиция, которая часто подсказывает ему, куда лучше свернуть на очередой развилке, что бы увеличить шансы на конечный успех. Другими словами, исследователи,занимающиеся изысканиями в теоретической области какой-то точной науки, по-сути, пользуются тем же методом перебора, хотя количество исследуемых вариантов при движении к цели по воображаемому графу локальных решений у них существенно ограничено благодаря уже накопленным знаниям, опыту и годами выработанной интуиции. Характерным примером является, например, финальная часть доказательства так называемой Великой теоремы Ферма, найденная математиком Уайлсом. Итоговый текст доказательства занимает более 130 страниц, что явно демонстрирует, насколько нетривиален и извилист может быть путь рассуждений при решении действительно сложных научных проблем. Может ли, в принципе, система ИИ найти это доказательство? Собственно, почему нет? Например, брать неопределённые интегралы путём комбинирования различных методов (интегирование по частям, замена переменной и т.д.) программы научились уже давно, примерно в то же время, когда начали появляться первые шахматные программы. Описание современных систем, которые работают в он-лайн режиме можно найти, например, тут. Позволю себе привести привести здесь небольшой отрывок из указанной статьи, поясняющей суть работы алгоритма: “С одной стороны, у Калькулятора (первообразных) нет математической интуиции, которая бы очень помогла в поисках первообразной, но зато, с другой стороны, Калькулятор в состоянии перепробовать большое количество разных вариантов за очень короткое время”. Уважаемый читатель, вам это ничего не напоминает? Ведь примерно так и работали шахматные программы первых поколений – они умели очень быстро перебирать варианты, но выбрать наиболее перспективные из них для построения адекватного дерева возможных позиций на более отдалённую перспективу у них получалось не очень. Соответственно, по мере увеличения производительности компьютеров уровень их игры медленно, но верно повышался от условного третьего разряда до итоговой победы в матче с чемпионом мира среди людей в 1997-м году.

Но для того, что бы победить лучших игроков в го с помощью одной лишь вычислительной мощности, без достаточно продвинутого алгоритма оценки позиции, даже современных суперкомпьютеров недостаточно. Этого удалось добиться (см. главу 1) только после того, как в программу была добавлена оценка позиции на основе глубокого обучения по базе данных из 160 тысяч реальный партий, сыгранных между собой профессиональными игроками и последующего дополнительного самообучения путём игры программы с самой собой. Насколько важна тонкая оценка позиции показывает следующий пример. Программа следующего поколения, созданная DeepMind – AlpaZero, которая с нуля очень быстро самообучилась игре сразу в три настольные игры – шахматы, го и сёги, при игре в шахматы с сильнейшей на сегодняшний день шахматной программой Stockfish в единицу времени успевает перебрать примерно в тысячу раз меньше вариантов, чем её соперник, и, тем не менее, она побеждает её в матче с разгромным счётом. Интересующимся могу порекомендовать разбор этого матча от гроссмейстера Сергея Шипова. Можно ли применить глубокое обучение и для улучшения перебора в программах, занятых решением абстрактных задач, таких, как, например Вампир? На мой взгляд, почему бы и нет, тем более, что и здесь может активно помочь самообучение. Итак, на мой взгляд, в умении решать задачи, требующие абстрактного мышления, современным системам ИИ отказать трудно.
Пожалуй, пока сегодня на этом закончу, продолжение разбора рассуждений Сергея, как говорится, в следующем номере.)



Автор Combinator
Список публикаций >>

Обсуждение Сообщений: 19. Последнее - 31.01.2023г. 13:41:17



Оценить работу >> пока еще нет оценок, ваша может стать первой :)

Об авторе: Статьи на сайте Форнит активно защищаются от безусловной веры в их истинность, и авторитетность автора не должна оказывать влияния на понимание сути. Если читатель затрудняется сам с определением корректности приводимых доводов, то у него есть возможность задать вопросы в обсуждении или в теме на форуме. Про авторство статей >>.

Тест: А не зомбируют ли меня?     Тест: Определение веса ненаучности

В предметном указателе: Вопрос про множественное Я | Десять вопросов навязчивому незнакомцу или Пособие для тех, кто не хочет быть завербованным | Дискуссия фуко хабермас: вопросы теории власти | К вопросу о внутренней речи | Как Астролог Шестопалов пытался отвечать на вопросы | Возможно ли бессмертие | Победа над смертью | Свободнорадикальная теория | Средства от старости | Возможно ли физическое бессмертие человека | Возможные концепции бессмертия в современной культуре | Масоны, Чернобыльская АЭС, холодный ядерный синтез и безграничные возможности для человечества. | Fornit: Эрик Дрекслер Машины создания. Грядущая эра нанотехнологии | Методы поиска идей и создания инноваций | Познай самого себя: Творческое решение проблем - создание новых вариантов | Созданы прототипы лазеров нового типа | Создание искусственной жизни возможно уже сейчас | Создана синтетическая ДНК, способная размножаться и эволюционировать | Лабораторными методами создан новый вид бабочек | Создан синаптический коммутатор с автономной памятью и низким потреблением | Гравитация | этапы эволюции жизни | Взаимоотношения церкви и государства на современном этапе российской истории | Все люди маги, только этого они ещё не знают | Депрессия у женщин Клиника, этиология, диагностика, принципы терапии | Комментарии к Мозг? - Это же так просто. | Обсуждение статьи К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть IV. | Обсуждение статьи К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть I. | Обсуждение статьи К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть II. | Обсуждение статьи К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть V. | К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть VI. (Combinator) | К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть V. (Combinator) | К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть IV. (Combinator) | К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть III. (Combinator) | К вопросу о возможности создания ИИ (и что под этим можно/нужно понимать, и чем он нам грозит). Часть I. (Combinator) | Безусловная вера | божестевенный акт творения | Виртуальные шаблоны понятий | Непознаваемое | О мистике, ее сути и свойствах | Поиск смысла жизни | Сказочные мечты | Сознание - телевизионный прием... | Сущность мистики | Счастливый Переход
Последняя из новостей: Трилогия: Основы фундаментальной теории сознания.

Обнаружен организм с крупнейшим геномом
Новокаледонский вид вилочного папоротника Tmesipteris oblanceolata, произрастающий в Новой Каледонии, имеет геном размером 160,45 гигапары, что более чем в 50 раз превышает размер генома человека.
Тематическая статья: Тема осмысления

Рецензия: Рецензия на статью

Топик ТК: Главное преимущество модели Beast
 посетителейзаходов
сегодня:00
вчера:00
Всего:2797

Авторские права сайта Fornit