Память человека не возникла внезапно. У виноградной улитки есть те же нервные клетки, что у людей, ничем не отличающиеся в функциональном отношении. Прослеживая усложнение организации нервной деятельности от самых простейших до человека, можно четко увидеть полную преемственность принципов ее организации: все самые простые механизмы запоминания состояний, запоминания простейших реакций в ходе научения, точно так же реализованы и актуальны у человека, но приобретают все новые качества.
Что же такое память мозга? Для любого вида памяти есть нечто, что эта память способна фиксировать для последующего восстановления. Поэтому, разобравшись, что является непосредственным материалом для запоминания, можно понять и принципы запоминания.
В отличие от всего, что мы знаем о различных видах памяти, память мозга не есть специальный обособленный механизм, специализированный на хранении единиц информации. Это не устройство, на вход которого подается сигнал, и в нужное время можно получить этот сигнал на выходе. Она - естественное продолжение свойств самой структуры мозга, его способность закреплять состояния своей активности так, что затем эти состояния восстанавливаются точно в том виде, в каком они были раньше.
Поэтому если мы видели цветок, и активность некоторых структур, которая нами воспринималась как цветок, когда-либо повториться в том же виде, то мы опять будем видеть цветок, хотя его может и не быть уже перед нами. При этом активные структуры окажутся расположены чуть ли не по всему мозгу: мысленный образ цветка вовсе не представлен какой-то одной возбужденной точкой в определенном месте (хотя можно найти точки, возбуждение которых способно восстановить активность всей структуры образа цветка).
Чтобы понять, с чем работает память мозга, нужно рассмотреть, во что превращаются сигналы внешнего мира, воспринятые
рецепторами. Конечно, дело не в том, что, в конечном счете, любые такие сигналы превращаются в электрические импульсы, с частотой следования, пропорциональной интенсивности стимула.
В информационном плане все воспринимаемое раскладывается на элементарные составляющие признаки, по которым можно судить об их назначении. Звук с помощью резонансных волокон улитки раскладывается на составляющие гармоники, интенсивность каждой из которых кодируется частотой импульсов, исходящих от резонансного волокна. Изображение сетчаткой раскладывается на отдельные точки, различаемые по трем основным цветам и по интенсивности (частотой импульсов от каждой точки). Химический состав воздуха и пищи раскладывается на отклики отдельных
рецепторов, чувствительных к определенным функциональным группам вещества. Боль и чувствительность кожи - зависит от интенсивности болевых и тактильных
рецепторов, холод - термо
рецепторов, давление крови - баро
рецепторов щитовидной железы, и т.д. (очень много разных датчиков в организме :)
Потому как ото всех
рецепторов сигналы приходят совершенно в одном и том же виде (импульсы разной частоты), несмотря на совершенно различную информационную
значимость, то назначение сигналов определяется только тем, от каких именно
рецепторов они пришли, т.е. цепи сигналов принципиально не могут прерываться нигде на пути от
рецепторов и до конечного своего назначения. Это очень важно. Раздражая глаз (светом или ударом кулака) мы всегда получаем сигнал, имеющий значение как элемент изображения (характеристика света). Как бы мы ни раздражали
рецепторы боли (тыканьем иголки, нагреванием, едким веществом или электричеством), мы получим болевой сигнал.
Возбуждая любым способом какую-либо клетку мозга, мы получим сигнал, воспринимаемый как соответствующий именно этой клетке специализированный сигнал. Поэтому такую клетку и можно называть
детектором (распознавателем) данного сигнала.
Мы научились воспринимать и вспоминать совокупность всех этих сигналов как общую картину воспринимаемого, каждый элемент которого стал что-то значить определенное для нас.
Все воспринимаемые сигналы, разложенные на составляющие, поначалу представлены
нейронами во вполне конкретных, фиксированных областях мозга, называемых по специфике: зрительным анализатором, слуховым анализатором и т.д. Повреждение какой-либо части этих анализаторов лишает восприятие соответствующих им сигналов, что проявляется как афазии (выпадения) восприятия (через какое-то время мозг способен переучивается обходиться без них, используя для распознавания только имеющееся).
Как только воспринятое разложено
рецепторами на элементарные составляющие, тут же клетки-
детекторы определяют, узнают в сочетаниях всех сигналов уже известное, что прежний опыт настроил эти
детекторы на узнавание. Это - самый первый уровень организации памяти.
Этот уровень очень успешно и многообещающе моделировался различными системами "
Что такое нейронная сеть и многослойный персептрон?" - устройств для выделения известных сочетаний из хаоса воспринимаемого.
Это распознавание осуществляется практически мгновенно, на зависть любым человеческим компьютерам и очень просто: если от точек, соответствующих распознаваемому контуру (например, описывающих окружность) пришли сигналы достаточной силы, а от фоновых соседних точек - нет, то общая сила сигналов становится достаточной, чтобы говорить об узнавании. Если не от всех точек ожидаемого контура есть сигнала или они есть от соседних точек, то распознавание становится неуверенным или вообще не фиксируется. Значит, достаточно от точек распознаваемого контура фигуры провести соединения, приходящие на вход элемента-
детектора, срабатывающего с некоторого уровня силы общего сигнала (порога), а с других - соединения, которые бы наоборот, гасили бы общий сигнал.
Именно так и происходит с клетками мозга: поначалу связи между ними неэффективны, не проводящи, но они способны становиться проводящими в определенных сочетаниях, характерных для какого-либо сочетания воспринимаемых элементов (возбуждение или торможение в результате зависит от того, какой сигнал вырабатывает предшествующий элемент: возбуждающий или тормозящий).
Как именно это происходит, и какие условия на это влияют рассмотрено в статье
преобразования сигналов в нервной системе. Для понимания принципа организации памяти это не существенно.
Важно то, что, начиная с элементарных составляющих, формируются отдельные
нейроны, которые отзываются только на определенные сочетания этих элементарных составляющих, становясь
детекторами неких простых образов: зрительных - кругов, квадратов, полос и т.п. звуковых сочетаний, вкусовых сочетаний и других. Каждый такой
детектор - результат фиксации этого элементарного образа в виде небольшой структуры постоянной памяти, наподобие персептронной.
Теперь уже эти отдельные
детекторы выступают как элементарные сигналы для еще более сложных
детекторов, отвечающих на усложненные образы, в которые могут входить как составляющие сигналы различных первичных зон: зрительных, слуховых и других. Мысленный образ, состоящий из таких
детекторов, уже может и не содержать первичную информацию о точном изображении, звуке и других элементах восприятия, хотя от этого значение образа не становится иным: он все так же обозначает тот же самый объект восприятия, но как бы в виде символов.
Очень важно то, что для обработки более сложными (более специализированными)
детекторами используются одни и те же элементарные составляющие - более простые
детекторы. Совершенно разные образы могут сформироваться из одних и тез же более элементарных
детекторов. Это второй уровень организации общей памяти.
Где именно локализуются
детекторы образов? Здесь на первый план выходит очень важный механизм, называемый вниманием.
...
Каждый текущий образ восприятия, представленный обширной сетью возбуждения, может быть представлен в виде его символа - совокупного
детектора данного образа, который имеет определенную локализацию, возбуждение которого может не вызывать вспоминание всего образа во всех подробностях, но является его символом, имеющим то же значение для личности, что и сам образ. Это то, чем мы мыслим, когда не прибегаем к образом, в отличие от образного
мышления. Такой тип
мышления намного более быстр и оперативен, он позволяет создавать множество последующих еще более сложных образов-абстракций, в состав которых входит.
...
Характерны случаи "забывания" того, что случилось буквально только что, когда внимание было отвлечено на что-то другое. Возникает чувство, что ты думал о чем-то важном, но никак не можешь вспомнить о чем же. Внимание переключило восприятие в другую область, в другой
контекст, а в старом в это время продолжает крутиться (рециркулировать за счет обратных связей, реверберировать) оставленный образ. К нему можно вернуться, вспомнив общий конктекст
психического состояния, сопутствовавший ему: то, чем занимался, положение тела, вернуться в ту же комнату, к тому же месту.
Для множества различных условий, по ходу
жизненного опыта, возникает множество следов воспринимаемых объектов. Но при этом ясно, что элементарные составляющие самых разных объектов могут быть одни и те же. Поэтому потеря даже значительных участков мозга в районах интегральных образов, где сходятся цепи от многих анализаторов, может быть для личности практически не обнаруживаема (примерно так же, как если бы и не было того специфического опыта наблюдения объекта в конкретных условиях).
Внешнее сходство с голографией в организации памяти - в том, что на основе одних и тех же элементов
нейронных сетей как бы составляются разные образы, т.е. одни и те же
нейронные сети как бы вмещают в себя одновременно множество
потенциальных образов, а в совершенно разных, третичных участках мозга могут сохраняться следы одного и того же объекта. Но понятно, что собственно с голографическим принципом (записью фазового профиля волны) такая организация не имеет ничего общего.
Основной принцип организации памяти состоит в том, что воспринятая картина, состоящая из совокупности сигналов различных типов анализаторов, фиксируется (примерно в течение 0,5 часа - время синтеза полипептидов в синаптичеких щелях) в виде становящихся эффективными связей между
нейронами в
нейронной сети. Поэтому при вспоминании этот участок
нейронной сети оказывается активным точно так же, каким он был при восприятии, что и дает тот же самый образ.
Вспоминание же это и есть процесс активизации данной структуры сети в результате перемещения на нее фокуса внимания...
...
От каждого более сложного
детектора признаков идут обратные связи к более элементарным, более специфичным
детекторам и даже отдельным элементам анализаторов так, что способны поддерживать общее возбуждение даже после того, как исчез первичный сигнал воспринимаемого. Принцип двунаправленности связей всех структур (
Универсальность принципа двусторонних связей между нервными центрами), обеспечивает удержание мысленного образа и обеспечивает достаточное время для процесса фиксации связей. Это и есть наша оперативная память, накапливающуюся активность которой мы вынуждены гасить с помощью общего торможения во время сна.
Таким образом память - это и есть наш мозг, а не отдельный инструмент в мозгу, а мысли - выбранные фокусом внимания активные образы.
Принцип двунаправленности связей обеспечивает целостность навыков от первичных
рецепторов до механизмов ответных действий -
эффекторов, обеспечивая оптимизацию отдельных движений при их выработке, в виде элементов образов-движения - точно такие же как элементы мысленных образов, ничем в принципе от них не отличаясь. Поэтому наша память включает не только органы чувств, но и все органы действий, как внешних, так и внутренней регуляции. Большинство как мысленных так и
рецепторно-
эффекторных образов памяти не выделяется в обособленные зоны фокусом внимания и, значит, не осознается.
Все это - очень краткое и схематичное изложение принципов организации памяти (уже ясно, что не только мозга, что организм функционально не отделим от мозга). Для более детального понимания необходимо рассматривать многие сопутствующие механизмы, что может потребоваться для большей уверенности в правильности понимания картины, при обобщениях известных экспериментальных данных,
экстраполяциях и сопоставлениях. См. также
Механизмы забывания,
Бессознательное как явление организации памяти мозга и
Иллюстрация организации памяти мозга.